{"items":["5faebbcd286a1c001751f773"],"styles":{"galleryType":"Columns","groupSize":1,"showArrows":true,"cubeImages":true,"cubeType":"fill","cubeRatio":1.3333333333333333,"isVertical":true,"gallerySize":30,"collageAmount":0,"collageDensity":0,"groupTypes":"1","oneRow":false,"imageMargin":0,"galleryMargin":0,"scatter":0,"chooseBestGroup":true,"smartCrop":false,"hasThumbnails":false,"enableScroll":true,"isGrid":true,"isSlider":false,"isColumns":false,"isSlideshow":false,"cropOnlyFill":false,"fixedColumns":0,"enableInfiniteScroll":true,"isRTL":false,"minItemSize":50,"rotatingGroupTypes":"","rotatingCropRatios":"","columnWidths":"","gallerySliderImageRatio":1.7777777777777777,"numberOfImagesPerRow":3,"numberOfImagesPerCol":1,"groupsPerStrip":0,"borderRadius":0,"boxShadow":0,"gridStyle":0,"mobilePanorama":false,"placeGroupsLtr":false,"viewMode":"preview","thumbnailSpacings":4,"galleryThumbnailsAlignment":"bottom","isMasonry":false,"isAutoSlideshow":false,"slideshowLoop":false,"autoSlideshowInterval":4,"bottomInfoHeight":0,"titlePlacement":"SHOW_ON_HOVER","galleryTextAlign":"center","scrollSnap":false,"itemClick":"nothing","fullscreen":true,"videoPlay":"hover","scrollAnimation":"NO_EFFECT","slideAnimation":"SCROLL","scrollDirection":0,"scrollDuration":400,"overlayAnimation":"FADE_IN","arrowsPosition":0,"arrowsSize":23,"watermarkOpacity":40,"watermarkSize":40,"useWatermark":true,"watermarkDock":{"top":"auto","left":"auto","right":0,"bottom":0,"transform":"translate3d(0,0,0)"},"loadMoreAmount":"all","defaultShowInfoExpand":1,"allowLinkExpand":true,"expandInfoPosition":0,"allowFullscreenExpand":true,"fullscreenLoop":false,"galleryAlignExpand":"left","addToCartBorderWidth":1,"addToCartButtonText":"","slideshowInfoSize":200,"playButtonForAutoSlideShow":false,"allowSlideshowCounter":false,"hoveringBehaviour":"NO_CHANGE","thumbnailSize":120,"magicLayoutSeed":1,"imageHoverAnimation":"NO_EFFECT","imagePlacementAnimation":"NO_EFFECT","calculateTextBoxWidthMode":"PERCENT","textBoxHeight":0,"textBoxWidth":200,"textBoxWidthPercent":50,"textImageSpace":10,"textBoxBorderRadius":0,"textBoxBorderWidth":0,"loadMoreButtonText":"","loadMoreButtonBorderWidth":1,"loadMoreButtonBorderRadius":0,"imageInfoType":"ATTACHED_BACKGROUND","itemBorderWidth":0,"itemBorderRadius":0,"itemEnableShadow":false,"itemShadowBlur":20,"itemShadowDirection":135,"itemShadowSize":10,"imageLoadingMode":"BLUR","expandAnimation":"NO_EFFECT","imageQuality":90,"usmToggle":false,"usm_a":0,"usm_r":0,"usm_t":0,"videoSound":false,"videoSpeed":"1","videoLoop":true,"gallerySizeType":"px","gallerySizePx":545,"allowTitle":true,"allowContextMenu":true,"textsHorizontalPadding":-30,"itemBorderColor":{"themeName":"color_12","value":"rgba(142,143,161,0.75)"},"showVideoPlayButton":true,"galleryLayout":2,"targetItemSize":545,"selectedLayout":"2|bottom|1|fill|true|0|true","layoutsVersion":2,"selectedLayoutV2":2,"isSlideshowFont":false,"externalInfoHeight":0,"externalInfoWidth":0},"container":{"width":260,"galleryWidth":260,"galleryHeight":0,"scrollBase":0,"height":null}}
- A-Level Further Maths
Polar Coordinates
The Cartesian system in two-dimensions models points in terms of x and y. The polar system, however, models a point as a distance form the pole, r (generally the origin) at a certain angle from the initial line, θ (typically the positive horizontal axis). Yes, this is like the modulus-argument form of complex numbers and Argand diagrams.

From the diagram, we can derive equations to convert between polar and Cartesian systems:
r cos(θ) = x
r sin(θ) = y
Where θ is given by:
θ = arctan(y/x)
And r is defined using Pythagoras' theorem:
r² = x² + y²
Sketching Polar Curves

To sketch a polar curve, use a graphical calculator or draw u a table of values for regular intervals of θ. This can be done quickly using the table function on the CASIO ClassWiz fx-991EX, and we recommend using π/6 as an interval.

The curve in this example is known as a cardioid, due to its dimple. This is common for equations in the form r = a(p+qcos(θ)), but only if q ≤ p < 2q. When p ≥ 2q, there is no dimple, making it more egg-shaped:

Areas Enclosed by Polar Curves
The area of a sector of a polar curve can be calculated using integration. However, simply integrating r will not work. Instead:

Of course, you an also calculate areas between polar curves. To do this, you need to find the angle at which they intersect.
Tangents to Polar Curves
To find tangents to a polar curve, you need to convert it into Cartesian form (one equation for x and one for y, both in terms of θ), using the formula at the top of this notes sheet. Then, you can differentiate parametrically.
Standard results are:
