{"items":["5faebbcd286a1c001751f773"],"styles":{"galleryType":"Columns","groupSize":1,"showArrows":true,"cubeImages":true,"cubeType":"fill","cubeRatio":1.3333333333333333,"isVertical":true,"gallerySize":30,"collageAmount":0,"collageDensity":0,"groupTypes":"1","oneRow":false,"imageMargin":0,"galleryMargin":0,"scatter":0,"chooseBestGroup":true,"smartCrop":false,"hasThumbnails":false,"enableScroll":true,"isGrid":true,"isSlider":false,"isColumns":false,"isSlideshow":false,"cropOnlyFill":false,"fixedColumns":0,"enableInfiniteScroll":true,"isRTL":false,"minItemSize":50,"rotatingGroupTypes":"","rotatingCropRatios":"","columnWidths":"","gallerySliderImageRatio":1.7777777777777777,"numberOfImagesPerRow":3,"numberOfImagesPerCol":1,"groupsPerStrip":0,"borderRadius":0,"boxShadow":0,"gridStyle":0,"mobilePanorama":false,"placeGroupsLtr":false,"viewMode":"preview","thumbnailSpacings":4,"galleryThumbnailsAlignment":"bottom","isMasonry":false,"isAutoSlideshow":false,"slideshowLoop":false,"autoSlideshowInterval":4,"bottomInfoHeight":0,"titlePlacement":"SHOW_ON_HOVER","galleryTextAlign":"center","scrollSnap":false,"itemClick":"nothing","fullscreen":true,"videoPlay":"hover","scrollAnimation":"NO_EFFECT","slideAnimation":"SCROLL","scrollDirection":0,"scrollDuration":400,"overlayAnimation":"FADE_IN","arrowsPosition":0,"arrowsSize":23,"watermarkOpacity":40,"watermarkSize":40,"useWatermark":true,"watermarkDock":{"top":"auto","left":"auto","right":0,"bottom":0,"transform":"translate3d(0,0,0)"},"loadMoreAmount":"all","defaultShowInfoExpand":1,"allowLinkExpand":true,"expandInfoPosition":0,"allowFullscreenExpand":true,"fullscreenLoop":false,"galleryAlignExpand":"left","addToCartBorderWidth":1,"addToCartButtonText":"","slideshowInfoSize":200,"playButtonForAutoSlideShow":false,"allowSlideshowCounter":false,"hoveringBehaviour":"NO_CHANGE","thumbnailSize":120,"magicLayoutSeed":1,"imageHoverAnimation":"NO_EFFECT","imagePlacementAnimation":"NO_EFFECT","calculateTextBoxWidthMode":"PERCENT","textBoxHeight":0,"textBoxWidth":200,"textBoxWidthPercent":50,"textImageSpace":10,"textBoxBorderRadius":0,"textBoxBorderWidth":0,"loadMoreButtonText":"","loadMoreButtonBorderWidth":1,"loadMoreButtonBorderRadius":0,"imageInfoType":"ATTACHED_BACKGROUND","itemBorderWidth":0,"itemBorderRadius":0,"itemEnableShadow":false,"itemShadowBlur":20,"itemShadowDirection":135,"itemShadowSize":10,"imageLoadingMode":"BLUR","expandAnimation":"NO_EFFECT","imageQuality":90,"usmToggle":false,"usm_a":0,"usm_r":0,"usm_t":0,"videoSound":false,"videoSpeed":"1","videoLoop":true,"gallerySizeType":"px","gallerySizePx":545,"allowTitle":true,"allowContextMenu":true,"textsHorizontalPadding":-30,"itemBorderColor":{"themeName":"color_12","value":"rgba(142,143,161,0.75)"},"showVideoPlayButton":true,"galleryLayout":2,"targetItemSize":545,"selectedLayout":"2|bottom|1|fill|true|0|true","layoutsVersion":2,"selectedLayoutV2":2,"isSlideshowFont":false,"externalInfoHeight":0,"externalInfoWidth":0},"container":{"width":260,"galleryWidth":260,"galleryHeight":0,"scrollBase":0,"height":null}}
- A-Level Maths
Vectors
A vector is a quantity with both magnitude and direction, and is typically represented visually by a line segment between two points.

There are many ways of representing vectors in notation:
The two points that the vector connects with an arrow above them
As a bold typeface lower case letter
As an underlined lower case letter
As a column vector, showing displacement in the x-direction above that in the y-direction
As a multiple of unit vectors, i (one unit in the positive x-direction) and j (one unit in the positive y-direction)
These notes will predominantly use bold typeface of lower case letters, underlined letters and the unit vectors i and j.

Vectors can be multiplied by a scalar, and added and subtracted:

Magnitude & Direction
The magnitude of a vector is given by Pythagoras' Theorem. Magnitude is noted using straight lines on either side of the letter, like modulus.
For the vector a = xi + yj, |a| = √(x²+y²)
A unit direction vector, â, can be found as a / |a|
A vector can also be defined by giving its magnitude and the angle it makes with one of the coordinate axis. This is called magnitude-direction form.
Position Vectors
Position vectors are used to give the location of a point relative to a fixed origin.

A point (p, q) has a position vector pi + qj
Vector Geometry
Position vectors can be used to solve geometric problems:

Vectors in 3D
In three-dimensional geometry, there are x, y, and z-axes. This means each coordinate has three values, (x, y, z). The position vector of this is xi + yj + zk

Pythagoras' Theorem still applies, but adjusted for three points:
Distance from point (x, y, z) to origin is given as √(x²+y²+z²)

The distance between two points, (x₁, y₁, z₁) and (x₂, y₂, z₂) is given as:
√( (x₁ - x₂)² + (y₁ - y₂)² + (z₁ - z₂)² )
Vector Geometry in 3D
